
WHITEPAPER

Perforce to GitLab:
A Strategic Migration
Blueprint for Modern
DevOps Teams

Contents
03

04

06

09

 1 1

 14

 17

 19

20

00 Executive Summary

0 1 Introduction

02 Comparative Analysis: Perforce vs Git

03 Strategic Considerations for Migration

04 Migration Planning and Preparation

05 Step-by-Step Migration Process

06 Post-Migration Optimisation

07 Conclusion

08 How VivaOps Can Help

Executive Summary

03Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

Perforce has long been the version control system of choice for managing complex,
large-scale codebases in industries such as gaming, finance, and aerospace.
However, as development teams become more distributed and the pace of software
delivery increases, the limitations of centralized version control are increasingly
evident.

This whitepaper presents a strategic blueprint for migrating from Perforce to GitLab, a
modern DevOps platform that enables scalable, collaborative, and secure software
delivery. At the core of this transition is Git, the distributed version control system that
underpins GitLab’s powerful capabilities. While Git provides the flexibility and speed
developers need, GitLab brings everything together—from source code management
and CI/CD to security and compliance—in a single, unified platform.

Whether you're looking to modernize your development toolchain, reduce legacy
system costs, or adopt end-to-end DevOps practices, this guide outlines the rationale,
process, and best practices for a successful migration. Designed for developers,
DevOps engineers, and enterprise architects, this whitepaper helps ensure a seamless
transition to GitLab, powered by the agility and efficiency of Git, to future-proof your
software delivery.

Considering a move from Perforce?
This whitepaper offers a strategic
plan for migrating to GitLab,
leveraging Git's power for scalable,
collaborative, and secure software
delivery, modernizing your DevOps
practices.

1. Introduction - I

04

The Evolution of Version Control Systems

Version control systems (VCS) have always been the backbone of software
development, enabling teams to manage code changes, collaborate efficiently, and
maintain a historical record of their work. Over the past two decades, VCS technology
has evolved significantly—from centralised systems like CVS and Subversion to more
advanced solutions such as Perforce (Helix Core), which addressed the scalability
challenges faced by large, enterprise-level development teams.

As software development practices matured and the industry embraced Agile,
DevOps, and continuous delivery models, the limitations of centralised systems
became increasingly apparent. The need for greater flexibility, distributed
collaboration, and seamless integration with automation tools led to the rapid rise of
distributed version control systems (DVCS) like Git.

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

05

1. Introduction - II

Perforce: Centralised Control for Complex Projects

Perforce (also known as Helix Core) was built to serve teams working on large-scale,
high-performance projects. Its centralized architecture places a single server at the
core of all version control activities. This model allows for:

 Precise access control down to the file level.

 Efficient handling of large binary files (which are often difficult to manage in other
 systems).

 Performance optimization for single, monolithic codebases.

 Integration tracking that records how and when files have been merged or
 branched.

Because of these features, Perforce has been widely adopted in industries such as
gaming, finance, aerospace, and semiconductor design fields where projects involve
vast amounts of data and strict control over every aspect of the codebase.

However, as development teams have become more distributed and software delivery
practices have shifted toward Agile and DevOps models, many organisations are
finding that the centralised nature of Perforce can become a limiting factor. Teams
working across multiple locations often experience delays, and adapting Perforce to
newer, more flexible workflows can require significant effort.

Git: Distributed Development for Modern Teams

Git was created to solve a different set of challenges. Instead of relying on a single
central server, Git uses a distributed model where every developer has a complete
copy of the entire repository, including its full history. This design offers:

 Local branching and merging, allowing developers to experiment and collaborate
 freely without affecting the main codebase.

 Improved speed and flexibility when working offline or across different time zones.

 Resilience and redundancy, as every copy of the repository acts as a backup.

 Seamless integration with continuous integration/continuous deployment (CI/CD)
 tools, making Git a natural fit for DevOps workflows.

Git’s distributed nature aligns well with modern software development practices such
as Agile and DevOps, where flexibility, collaboration, and rapid iteration are essential. It
also provides a foundation for scaling development teams across different locations
and time zones without compromising speed or reliability.

As a result, Git has become the preferred choice for most new projects and is widely
adopted by both small teams and large enterprises. It supports the fast, collaborative,
and automated development practices that drive modern software engineering.

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

2. Comparative Analysis: Perforce vs Git - I

06

Understanding the fundamental differences between Perforce and Git is essential for teams considering migration. Each system was designed with different goals and workflows in
mind, and these differences affect how development teams operate daily.

Architecture & Design
Philosophy

Perforce
Follows a centralised architecture. All version control
operations depend on a single, authoritative server.
This design provides tight control over files, access
permissions, and integration history.

Git
Implements a distributed architecture. Every developer
has a complete copy of the repository, including its
entire history. This enables fast local operations and
reduces reliance on a central server.

Branching and
Merging

Perforce
Uses a Streams model. It’s powerful and flexible, but
can be complex to manage, especially for teams new
to the system.

Git
Uses lightweight branches that developers can create,
modify, and merge easily. This encourages flexible
workflows like feature branching, Git Flow, and
trunk-based development.

Performance and
Scalability

Perforce
Performs exceptionally well for large binary files and
monolithic repositories. It’s optimised for projects with
vast file sizes and strict version control requirements.

Git
Optimised for distributed teams and excels at
managing large numbers of text-based files and
frequent branching/merging. For large files, solutions
like Git Large File Storage (Git LFS) can be used.

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

07

Collaboration
Model

Perforce
Requires developers to connect to a
central Perforce server for most
operations. This can be limiting for
distributed teams or those working
offline.

Git
Enables decentralised collaboration.
Developers can work offline, commit
changes locally, and push updates when
convenient.

Integration and
Ecosystem

Perforce
Well-suited for industries like gaming,
hardware development, and other fields
requiring management of large
repositories and binary assets.
Integration with modern DevOps
workflows may require additional tooling.

Git
Highly adaptable to DevOps practices.
Offers strong integrations with CI/CD
pipelines, microservices architectures,
and modern security and testing tools.

Cost and
Licensing

Perforce
Requires licensing fees that can increase
with team size and feature requirements.

Git
The core system is open-source. Teams
can use free options or opt for enterprise
platforms like GitLab CE or GitHub
Enterprise for additional features and
support.

Learning Curve and
Community Support

Perforce
It may have a steeper learning curve,
especially for developers unfamiliar with
its branching and permission models.
Community resources are more limited
compared to Git.

Git
Widely adopted, with a massive
community and extensive
documentation, tutorials, and support
options available.

2. Comparative Analysis: Perforce vs Git - II

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

08

Perforce offers strong
centralised control and is
optimised for handling large
files and monolithic
repositories, making it ideal
for specific industries.
However, Git provides the
flexibility, scalability, and
modern tooling integrations
required to support today’s
fast-paced, collaborative,
and distributed development
environments.

Summary Comparison Table

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

Feature

Version Control Model

Performance

Branching

Collaboration

Integration

Cost

Centralised

Faster for large files & monorepos

Streams (complex but powerful)

Requires P4 server connection

Strong for gaming, hardware, and large repos

Licensing required

Distributed

Optimised for distributed teams

Lightweight branches

Distributed, allows offline work

Strong for DevOps, CI/CD, microservices

Open-source (GitLab CE) & enterprise options

Perforce Git

2. Comparative Analysis: Perforce vs Git - III

Why Migrate from Perforce to Git?

09

The decision to migrate from Perforce to Git is often driven by a combination of
business goals and technical needs. While Perforce offers powerful features for
specific use cases, many organisations are finding that it no longer aligns with the
demands of modern software development.

Migrating from Perforce to Git is a strategic decision influenced by several factors:

Licensing Costs: Git is an open-source tool under the GPL license, eliminating the
licensing fees associated with proprietary systems like Perforce Helix.

Simplified Branching and Merging: Git's lightweight branching model allows for easier
context switching and supports feature branching workflows more efficiently than
Perforce's heavyweight branching system.

Enhanced Collaboration: Git enables developers to work independently on their local
repositories, facilitating faster and more flexible collaboration without the need for
constant communication with a central server.

Integration with Modern Tools: Git integrates seamlessly with contemporary DevOps
tools, CI/CD pipelines, and issue tracking systems, providing a cohesive development
environment.

Community and Support: The vast Git community offers extensive tutorials,
documentation, and support, making it easier for teams to adopt and troubleshoot.

3. Strategic Considerations for Migration - I

3. Strategic Considerations for Migration - II

10

Potential Challenges and Considerations

While the benefits are clear, migrating from Perforce to Git requires careful planning to
avoid disruption and ensure long-term success. Some key challenges to consider
include:

Preserving History and Data Integrity: Ensuring that the full history of the
codebase—including commit histories, metadata, and permissions—is accurately
transferred during the migration.

Workflow Adjustments: Development teams may need to adapt to Git’s workflows and
branching strategies, which differ significantly from Perforce’s centralised model.

Tooling and Automation Changes: Existing automation scripts, integrations, and
tooling built around Perforce may need to be reworked or replaced to function with Git.

Training and Change Management: Developers, testers, and operations teams may
require training to become proficient with Git. Clear communication and support
during the transition period are essential.

Large Files and Binary Data: While Git excels at managing text-based code, handling
large binary files may require additional solutions like Git Large File Storage (Git LFS).

Assessing Organizational Readiness

Before initiating the migration, consider the following:

Team Proficiency: Evaluate your team's familiarity with Git to identify training needs.

Infrastructure Compatibility: Ensure that your current infrastructure can support Git
and any associated tools.

Workflow Alignment: Analyze existing workflows to determine how they will translate to
Git's model.

Data Migration Strategy: Plan for preserving commit history, metadata, and access
controls during the transition.

Risk Management: Develop a rollback plan to mitigate potential issues during
migration.

By carefully considering these factors, organizations can position themselves for a
successful transition from Perforce to Git.

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

4. Migration Planning and Preparation - I

11

Migrating from Perforce to Git is a significant transition that requires detailed planning
to ensure success. Before executing any migration tasks, organisations must assess
their current environment, define their goals, and prepare both their teams and
infrastructure for the change.

At VivaOps, the migration process involves transitioning code and version control data
from Perforce Helix to Git, using Git P4 as the intermediary tool. Once the data is
converted into Git repositories, the final step is to transfer them into GitLab, where
ongoing development will continue.

Migration Overview

The migration will include:

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

Key Migration Items

Item

Repositories

Branches

Tags

Users

Commit history and branches preserved

Migrated as remote branches

Labels in Perforce converted to Git tags

User mapping is configured through GitLab OAuth (Azure AD)

Notes

Converting repositories, commit history, branches, and labels (tags) from Perforce
into Git using Git P4.

Transferring the resulting Git repositories to GitLab as the new version control
platform.

Preserving historical data and workflows to maintain continuity for development
teams.

This approach ensures that essential project history and collaboration models are
retained during the transition.

12

Before starting the
migration, the following
must be defined and
reviewed:

Version of Perforce in use.
Hosting details for the Perforce environment.
Single Sign-On (SSO) and plugin
configurations.

Branching conventions.
Number of depots.
Size of binaries.
Typical Perforce changelist sizes.

Process and Requirements

Migration
Flow

Entry Criteria

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

4. Migration Planning and Preparation - II

Depot
Cloning

Branch and
Label

Syncing

Branch
Conversion

Validation Push to
Gitlab

Loop
Control

Migration Phase 2

Migration Phase 1

13Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

Edge Cases to Consider

• Case sensitivity: Git P4 is case sensitive.
• Depot migration limits: Git P4 can only migrate one depot at a time.
• Branch retrieval: Depot syncing is required after cloning to ensure all branches and

labels are captured.

Prerequisites

• Git, Git-P4, and Perforce CLI tools installed on the staging server.
• Perforce credentials configured on the staging server.
• GitLab Personal Access Token (PAT) set up for pushing to GitLab.

Assumptions

• The project follows a conventional branching strategy (e.g., //depot/dev… maps to
"dev").

• Large binary files are not stored in dummy depots during migration.

Teams will need to complete post-migration configuration, including:
• Setting up CI/CD pipelines.
• Defining branch policies.
• Configuring merge request (MR) approval workflows.
• Implementing segregation of duties (SOD) policies.

This preparation ensures that both historical data and operational workflows are
preserved, enabling teams to transition smoothly to Git.

End State

Once the migration is complete:
Repositories, branches, commit history, and user access will be fully migrated to GitLab.

4. Migration Planning and Preparation - III

14

The migration from Perforce to Git, using Git P4 as an intermediary, follows a structured sequence of steps. This approach ensures a smooth transition, maintains historical data
integrity, and addresses known limitations during the process.

• Install required tools on the staging server:
◦ Git
◦ Git-P4
◦ Perforce client CLI

• Configure Perforce credentials.
• Set up GitLab Personal Access Token (PAT) for

repository push access.
• Review and confirm:
◦ Perforce version and hosting setup.
◦ Branching conventions.
◦ Number of depots and binary sizes.

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

5. Step-by-Step Migration Process - I

Environment
Preparation

1
Step

• Identify the repositories to migrate.
• Map out corresponding branches, labels (tags), and

user access control requirements.
• Validate that no unsupported configurations or

irregular branching conventions exist.

Repository
Assessment

2
Step

Use Git P4 to:
◦ Clone the Perforce depot.
◦ Convert commit history, branches, and labels into

Git format.
• Note: Git-P4 will create remote branches

(remotes/p4/<branch>).

Edge consideration:
Since Git-P4 can only migrate one depot at a time and
is case sensitive, careful tracking and validation are
required at this stage.

Initial Migration
with Git P4

3
Step

5. Step-by-Step Migration Process - II

15Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

• Automation scripts are applied to:
◦ Convert remote branches into standard Git

branches.
◦ Iterate over all depots for complete migration

(since Git-P4 does not natively support migrating
all depots at once).

Branch Structure
Adjustment

4
Step

• Review for large binary files.
• Migrate these using Git Large File Storage (Git LFS) or

S3 integration, as Git alone does not manage large
binaries efficiently.

Large Files
Handling

5
Step

• Update GitLab configuration (gitlab.rb) to support
OAuth with Azure AD.

• Align user accounts between Perforce and GitLab to
maintain access control consistency.

User
Mapping

6
Step

The migration from Perforce to Git, using Git P4 as an intermediary, follows a structured sequence of steps. This approach ensures a smooth transition, maintains historical data
integrity, and addresses known limitations during the process.

16Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

5. Step-by-Step Migration Process - III

• Validate the migrated repositories:
◦ Check commit history, branches, and tags for

completeness.
◦ Verify user access and permissions.
◦ Ensure all branches and labels have been captured

correctly.
• Perform sync tests between Perforce and Git to

confirm data consistency.

Validation
and Testing

7
Step

• Push the fully converted and validated Git
repositories to GitLab.

• Confirm successful repository creation and access in
GitLab.

Final Transfer
to GitLab

8
Step

• Set up:
◦ CI/CD pipelines.
◦ Branch protection policies.
◦ Merge Request (MR) approval workflows.
◦ Segregation of Duties (SOD) policies.

•
• Notify development teams of the completed

migration and provide documentation/training as
needed.

Post-Migration
Configuration

9
Step

The migration from Perforce to Git, using Git P4 as an intermediary, follows a structured sequence of steps. This approach ensures a smooth transition, maintains historical data
integrity, and addresses known limitations during the process.

6. Post-Migration Optimisation - I

17

Completing the migration from Perforce to Git is only the first step. To fully realise the benefits of the new version control system and minimise disruption, teams must optimise
workflows, configurations, and team practices in the new GitLab environment.

Monitor repository performance to identify and resolve
any latency or access issues.

Validate branch structures, commit histories, and tags
to ensure data integrity has been preserved.

Periodically verify that large files stored via Git LFS or
external storage (e.g., S3) are accessible and
performing as expected.

A. Performance Monitoring
and Validation

B. Workflow
Enhancements

C. Security and Access
Controls

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

Branching policies:
Establish or refine branching strategies suitable for Git,
such as feature branching, Git Flow, or trunk-based
development.

CI/CD pipelines:
Build or migrate continuous integration and deployment
pipelines within GitLab to support automated testing,
security scanning, and deployment.

Merge request (MR) workflows:
Define MR approval processes, including peer reviews
and automated checks to maintain code quality.

Access permissions:
Review and adjust user roles and permissions in GitLab
to ensure appropriate access levels.

Single Sign-On (SSO) integration:
Confirm that SSO (such as OAuth with Azure AD) is fully
functional and covers all migrated users.

Segregation of Duties (SOD):
Implement or update SOD policies to maintain
compliance and prevent unauthorised changes to
critical codebases.

6. Post-Migration Optimisation - II

Completing the migration from Perforce to Git is only the first step. To fully realise the benefits of the new version control system and minimise disruption, teams must optimise
workflows, configurations, and team practices in the new GitLab environment.

Post-migration optimisation is not a one-time task but an ongoing effort. By monitoring performance, refining workflows, strengthening security, and fostering a culture of continuous
improvement, organisations can ensure their new Git environment delivers long-term value and supports agile, collaborative development.

Provide training on Git workflows, GitLab features, and
best practices to help developers adapt quickly.

Establish support channels where team members can
get help with new tools or processes.

Encourage sharing of lessons learned and continuous
feedback to refine workflows.

D. Developer Training and
Support

E. Automation and Tooling
Enhancements

F. Continuous
Improvement

Evaluate and adopt automation tools that integrate
with GitLab for code quality checks, security scanning,
and deployment monitoring.

Explore additional DevOps integrations that can further
streamline the development process, such as issue
tracking, monitoring, and container orchestration tools.

Regularly review the new environment’s performance,
developer satisfaction, and operational efficiency.

Collect feedback from team members and iterate on
processes to ensure the Git/GitLab setup continues to
meet evolving team needs.

18Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

19Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

7. Conclusion

Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

A version control migration is never just about moving data—it’s about
enabling what comes next.

By completing the transition from Perforce to Git, teams don’t just adopt
a new tool; they open the door to better collaboration models, smoother
DevOps workflows, and a foundation that can evolve as technology and
business needs change.

While this migration requires careful planning and execution, it also
creates an opportunity to revisit workflows, streamline processes, and
empower developers to work more efficiently.

For teams ready to future-proof their development practices, this
migration is not the end of a project, it’s the beginning of new
possibilities.

At VivaOps, we understand that Version
control and toolchain migrations are not
a simple lift-and-shift exercise. It’s a
complex process that affects code
history, team workflows, automation, and
compliance. As a strategic GitLab Select
Partner, VivaOps helps engineering
leaders go beyond migration to
modernise their entire DevSecOps
ecosystem.

Version control and toolchain migrations
Migrate from Perforce or other legacy systems to Git and GitLab, preserving
commit history, branch structures, and user access.

CI/CD optimisation and pipeline modernisation
Reduce build times, eliminate flakiness, and accelerate deployment
velocity.

Security and compliance integration
Shift-left security with GitLab’s SAST, DAST, and dependency scanning
integrated into development workflows.

Cloud native transformation and CloudOps
Containerise workloads, adopt GitLab SaaS, and implement Kubernetes at
scale.

SRE and TestOps excellence
Embed reliability engineering and automated testing to improve release
quality and resilience.

Enablement and training
Equip teams with best practices, live coaching, and standardised GitLab
blueprints.

What we deliver:

20Perforce to GitLab: A Strategic Migration Blueprint for Modern DevOps Teams | VivaOps

8. How VivaOps Can Help

VivaOps is a leading provider of AI-powered DevSecOps solutions. We offer solutions
designed to modernize and improve your development tasks, ensuring your software is
built with utmost flexibility, security, and scalability.

Contact us at info@vivaops.com

© 2024vivaops.ai. All rights reserved.

About vivaops

